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Nondirective meditation techniques are practiced with a relaxed focus of attention
that permits spontaneously occurring thoughts, images, sensations, memories, and
emotions to emerge and pass freely, without any expectation that mind wandering
should abate. These techniques are thought to facilitate mental processing of emotional
experiences, thereby contributing to wellness and stress management. The present study
assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced
practitioners of Acem meditation in two experimental conditions. In the first, nondirective
meditation was compared to rest. Significantly increased activity was detected in areas
associated with attention, mind wandering, retrieval of episodic memories, and emotional
processing. In the second condition, participants carried out concentrative practicing of
the same meditation technique, actively trying to avoid mind wandering. The contrast
nondirective meditation > concentrative practicing was characterized by higher activity
in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion,
the present results support the notion that nondirective meditation, which permits mind
wandering, involves more extensive activation of brain areas associated with episodic
memories and emotional processing, than during concentrative practicing or regular rest.
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INTRODUCTION
VOLITIONAL AND SPONTANEOUS ACTIVITIES IN MEDITATION
Many types of meditation used for stress management and health
can be described as a cycle of volitional and spontaneous cog-
nitive processes (Cardoso et al., 2004). Attention is intentionally
focused on a suitable meditation object, such as mental repetition
of a non-semantic meditation sound, sensations associated with
breath or specific regions of the body, a physical or mental visual
image, or by simply being aware of the shifting flow of inner expe-
riences (Cardoso et al., 2004; Ospina et al., 2007). Focusing on the
meditation object is typically interspersed with periods of mind
wandering (Cardoso et al., 2004; Ospina et al., 2007; Hasenkamp
et al., 2012), which has been defined as being absorbed in sponta-
neously occurring thoughts, images, sensations, memories, and
emotions unrelated to current volitional activity, more or less
without really being aware of it (Mason et al., 2007; Christoff
et al., 2009). An example of this cognitive cycle is given in a
detailed temporal study of meditation with focused attention
on the breath (Hasenkamp et al., 2012). Functional magnetic

resonance imaging (fMRI) was used to correlate brain activa-
tion with cognitive processes that describes the shifting between
focusing on the meditation object and spontaneously occurring
thought. Mind wandering was associated with activation of the
default mode network as well as sensory and motor cortices and
posterior insula. Becoming aware that the breath was completely
out of the focus of attention was associated with activation of the
salience network. Shifting back to the breath and sustaining the
focus on it were associated with elements of the executive network
(Hasenkamp et al., 2012).

DIFFERENT PERCEPTIONS OF MIND WANDERING
The function of spontaneous mental processes in meditation is
controversial. How they are dealt with, depends on the type
of practice (Box 1–3). In most mindfulness practices and many
other techniques associated with Buddhist traditions, mind wan-
dering is considered a distraction and a gateway to rumination,
anxiety and depression (Sood and Jones, 2013). An ultimate
goal of these methods is therefore to reduce mind wandering
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Box 1 | Focused attention

Focused attention practices usually entail paying attention to the physical sensation of the breath wherever it is felt most strongly in the
body, without trying to change it in any way. Whenever attention has wandered to something else, the meditator gently but firmly brings
it back to the physical sensation of the breath (Brewer et al., 2011). Important aims of the practice are to quickly detect mind wandering
and maintain attention more stably on the breath, eventually needing less effort in the task, and over time reducing emotional reactivity
(Lutz et al., 2008b). Focused attention practices typically involve a relatively narrow field of focus. As a result, the ability to identify stimuli
outside that field of focus may be reduced (Lutz et al., 2008b).

Box 2 | Open monitoring

Open monitoring practices (sometimes called choiceless awareness) are described as paying attention to whatever comes into ones
awareness - whether it is a thought, emotion, or body sensation - just following it until something else emerges without trying to hold onto
it or change it in any way (Brewer et al., 2011). Even though “effortful selection” or “grasping” of an object as primary focus is gradually
replaced by “effortless sustaining of awareness without explicit selection,” the core activity of the practice is to sustain attention with the
shifting flow of experiences, sometimes detecting emotional tone as a background feature (Lutz et al., 2008b).

Box 3 | Nondirective meditation

In nondirective meditation practices, a relaxed focus of attention is established by effortless, mental repetition of a short sequence of
syllables, which may either be a traditional mantra or a non-semantic meditation sound (Benson et al., 1975; Carrington et al., 1980; Ospina
et al., 2007; Davanger et al., 2010; Travis and Shear, 2010). Whenever the meditator becomes aware that the focus of attention has shifted
to mainly being occupied with spontaneously occurring thoughts, images, sensations, memories, or emotions, attention is gently and
non-judgmentally redirected to repetition of the meditation sound. The aim of the practice is to increase the ability to accept and tolerate
stressful and emotional experiences as a normal part of meditation as well as everyday life (Davanger et al., 2010). Attention is neither
directed toward staying with the meditation object like in focused attention techniques nor directed toward observing the spontaneous flow
of experiences like in open monitoring meditation (Lutz et al., 2008b). Consequently, such methods comprise a distinct style of practicing
(Cahn and Polich, 2006; Ellingsen and Holen, 2008; Travis and Shear, 2010), that has previously been termed nondirective meditation, as
the presence of spontaneously occurring thoughts, images, sensations, memories, and emotions is accepted without actively directing
attention toward them or away from them (Ellingsen and Holen, 2008; Lagopoulos et al., 2009; Nesvold et al., 2011). Further details on
Acem meditation and its background are provided in previous publications (Ellingsen and Holen, 2008; Davanger et al., 2010).

and its purported negative consequences (Brewer et al., 2011;
Sood and Jones, 2013; Taylor et al., 2013). In contrast, some
practices consider the spontaneous flow of inner experiences
as part of the meditation process. Accepting mind wandering
while practicing is a core element in the Relaxation Response,
Transcendental Meditation, Clinically Standardized Meditation,
and Acem Meditation (Benson et al., 1975; Carrington et al.,
1980; Carrington, 1998; Ospina et al., 2007; Davanger et al.,
2010; Travis and Shear, 2010). As described below, these tech-
niques may be classified as nondirective, indicating less con-
trol of the process while practicing (Box 3). It has been pro-
posed that types of meditation that allow spontaneous thoughts,
images, sensations, memories, and emotions to emerge and
pass freely without actively controlling or pursuing them, over
time may reduce stress by increasing awareness and accep-
tance of emotionally charged experiences (Ellingsen and Holen,
2008; Lutz et al., 2008a; Davidson, 2010). This notion con-
curs with recent articles suggesting that mind wandering and
activation of the default mode network in general may serve
introspective and adaptive functions beyond rumination and
daydreaming (Ottaviani et al., 2013). Potentially useful func-
tions would include mental simulations, using autobiographical
memory retrieval to envision the future and conceiving the per-
spective of others (Buckner et al., 2008; Andrews-Hanna, 2012).
An interesting question is therefore whether type of medita-
tion and mode of practicing might affect the extent of mind

wandering and the pattern of default mode activation during
meditation.

EXTENT OF MIND WANDERING
It is often assumed that mind wandering is reduced during
meditation, and more so in practitioners with many years of
experience. The evidence comes from a relatively small num-
ber of studies in which the extent of mind wandering was
assessed by questionnaire. Self-reported mind wandering dur-
ing meditation was less abundant in participants with long-term
experience in “concentration” (focused attention on breath),
“loving-kindness meditation” (exercise oriented toward enhanc-
ing unconditional, positive emotional states of kindness and
compassion), and “choiceless awareness” (open monitoring of
mind wandering) compared to inexperienced controls (Brewer
et al., 2011; Hofmann et al., 2011). Self-reported time on task dur-
ing “mindfulness of breathing” was higher in experienced than in
inexperienced participants, indicating less mind wandering with
training (Holzel et al., 2007). In contrast, there was no corre-
lation between the number of button presses indicating epochs
of mind wandering during focused attention on the breath with
years of practice or with high vs. low practice groups (Hasenkamp
et al., 2012). In this study, participants recorded an average of one
mind wandering per 80 s over a 20-min fMRI session, by pressing
a button whenever they realized that their mind had wandered
completely away from the breath.
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DEFAULT MODE NETWORK ACTIVATION
Many concepts of how meditation affects mind wandering derive
from its association with the default mode network. A number
of imaging studies have shown that a system of cortical areas
increase their activation when the brain is not engaged in an
externally defined task, and that the magnitude of increase cor-
relates with the extent of mind wandering (Mason et al., 2007;
Buckner et al., 2008). Although some variation occurs, the default
network mostly includes medial brain structures, i.e., the ven-
tral medial prefrontal cortex, the posterior cingulate/retrosplenial
cortex, the inferior parietal lobe, the lateral temporal cortex, the
dorsal medial prefrontal cortex, and the hippocampal formation
(Buckner et al., 2008).

A majority of the studies on meditation and mind wandering
have measured how fMRI activation and functional connectiv-
ity of the default mode network are related to mind wandering.
Most of these describe trait differences in brain activation pat-
terns arising from meditation, often showing decreased default
mode network activation in experienced meditators compared to
novices (Brewer et al., 2011; Sood and Jones, 2013).

Only a few studies have reported state changes, contrasting
meditation with various control tasks in the same practitioners,
but with varying results. Using rest as a control, Brefczynski-Lewis
and coworkers showed activation of a large overlapping network
of attention-related cortical regions during “concentration medi-
tation” (focused attention with a simple visual stimulus), includ-
ing frontal, parietal regions, lateral occipital cortex, and insula
(Brefczynski-Lewis et al., 2007). Lazar and coworkers showed
activation of dorsolateral prefrontal and parietal cortices, hip-
pocampus/parahippocampus, temporal lobe, pregenual anterior
cingulate cortex, striatum, and pre- and post-central gyri during
mantra meditation coordinated with breath (Lazar et al., 2000).
Generating a list of animals was used as control task. Engström
and coworkers compared mantra meditation with silent repeti-
tion of a short semantic phrase as control and detected activation
in bilateral hippocampus/parahippocampal formations, as well
as bilateral middle cingulate cortex and bilateral precentral cor-
tex (Engstrom et al., 2010). Interestingly, Manna and coworkers
(Manna et al., 2010) described reduced activation of precuneus
(a core default mode network area) compared to rest during
meditation with focused attention on the breath, and increased
activation during meditation with open monitoring of “any expe-
riential or mental content” (Manna et al., 2010). None of the
aforementioned studies assessed the extent of mind wandering.

AIM AND HYPOTHESIS
The aim of the present study was to determine whether nondi-
rective meditation is conducive to default mode network acti-
vation. We hypothesized that accepting the spontaneous flow of
thoughts, images, sensations, memories, and emotions as part of
meditation, without any emphasis on reducing, monitoring, eval-
uating or directly relating to it, would increase mind wandering
and activation of the default mode network, compared to prac-
ticing with more emphasis on control and a concentrative focus
of attention. We therefore assessed whether practicing the same
technique (Acem meditation) with different types of attentional
focus would affect the subjective experience and the pattern of
brain activation during meditation assessed by fMRI.

METHODS
ETHICS STATEMENT
The National Committee for Medical Research Ethics in Norway
approved the study. Informed written consent was obtained from
all participants before inclusion.

PARTICIPANTS
Twenty-seven experienced practitioners of Acem meditation (18
men and 9 women) were recruited. All participants were regu-
lar practitioners (2 × 30 min daily) and had extensive experience
with longer meditation periods, including participation in at least
one 3-week long retreat. Twenty-four were right handed, ascer-
tained by the Edinburg Handedness Inventory (Oldfield, 1971).
Thirteen participants were excluded from final data analysis due
to rigorous quality control; only participants with acceptable
recordings from both fMRI sessions were included. Three were
excluded because of reported sleep during the recording, two
because of significant head motion (≥1 mm), one because of
error in scanning protocol, and seven because of technical prob-
lems that lead to corruption of the fMRI images. Even though the
head was securely fixed inside the headcoil according to standard
procedure (using triangular shaped foam pads), minor invol-
untary movements were difficult to avoid during two 20-min
recordings in a relaxed reclining condition. Thus, 14 practitioners
(8 men and 6 women, 13 right handed), aged 28–61 years (mean
49, SD 9) with 9–38 years of meditation practice (mean 27, SD 9)
were included in final data analysis. We included only experienced
meditators in our study, since it takes extensive training to reliably
distinguish between nondirective and concentrative practicing.

fMRI MEDITATION INSTRUCTIONS
Details on nondirective meditation has been provided above
(Box 3) and in previous publications (Ellingsen and Holen, 2008;
Davanger et al., 2010). Participants were asked to perform Acem
meditation in two separate runs of fMRI acquisition. In nondi-
rective meditation the participants were instructed to repeat the
meditation sound in a relaxed and effortless manner, in the
same way as during home practice. Spontaneous mind wander-
ing was neither prevented nor encouraged. In contrast, during
concentrative practicing, the meditation sound was repeated in
a more forceful manner, with strict regularity, in order to main-
tain the focus of attention on the sound, attempting to avoid
mind wandering. As expected, mind wandering was not avoided
completely, although more of the participants reported decreased
mind wandering during concentrative practicing than in nondi-
rective meditation. During data acquisition in the resting blocks
(see below) participants were instructed to rest without repeating
the meditation sound, allowing mind wandering where sponta-
neously occurring thoughts, images, sensations, memories, and
emotions could emerge and pass freely.

EXPERIMENTAL DESIGN
In order to establish a stable, relaxed resting control state,
all participants meditated for 45–60 min before experimental
recordings. Each practitioner was scanned in one session with one
run of nondirective meditation and one of concentrative practic-
ing (block design), presented in randomized order. In each run
the practitioners performed a sequence of four meditation blocks
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lasting 3, 5, 4, and 3 min respectively, interspersed with five resting
blocks lasting 1 min each. Block length was varied in order to
avoid “false” fMRI activation induced by expectation. All subjects
were scanned with eyes closed. Concentrative practicing and rest
were used as contrasts for nondirective meditation. This would
minimize the possible effect of underlying traits in the subjects,
each subject serving as his or her own control. Immediately fol-
lowing each scanning run, all participants were asked to complete
a questionnaire assessing their meditation experiences: extent of
mind wandering compared to regular home practice, whether
they became drowsy or briefly fell asleep, and to what extent the
sound from the MRI scanner was disturbing. They also confirmed
whether they had been able to carry out the meditation tasks.

DATA ACQUISITION
Structural and functional scanning was performed using a 3T
Philips Intera scanner (Philips Medical, Best, The Netherlands)
with an 8-channel SENSitivity Encoding (SENSE) head-coil
(InVivo, Gainsville, FL, USA). Using BOLD-sensitive imaging, a
total of 400 volumes was acquired for each run with a gradient-
echo echo-planar-imaging pulse sequence. Each volume consisted
of 44 contiguous axial slices, with the following scan parameters:
SENSE-reduction factor = 2.2, TR = 3000 ms; flip angle = 90◦;
TE = 35 ms; FOV = 230 mm; slice thickness = 2.5 mm; matrix
= 64 × 64 giving an in-plane resolution of 3.6× 3.6 mm2. Also
a high-resolution T1-weighted image series was collected using
a three-dimensional magnetization-prepared rapid gradient echo
sequence (MP-RAGE) consisting of 182 contiguous sagittal slices
of 1.2-mm thickness with an in-plane resolution of 1 × 1 mm. For
analysis, all images were reconstructed to 1 mm3.

DATA ANALYSIS
Imaging data were analyzed using FSL 4.0 (Analysis Group,
FMRIB, Oxford, UK; www.fmrib.ox.ac.uk/fsl/). First, non-brain
tissue was removed from the T1-weighted anatomical image-
series using the Brain Extraction Tool (Smith, 2002). The result-
ing images were transformed non-linearly to the MNI152 1 × 1 ×
1 mm template (Montreal Neurological Institute, Montreal, QC,
Canada), and motion corrected with the median volume of each
run as reference using the FNIRT algorithm (Andersson et al.,
2007). Then each functional run was co-registered to the corre-
sponding anatomical T1-weighted image-series and transformed
into MNI152 space by the transformation matrix obtained from
the T1-weighted images. The functional data was smoothed by a
6 mm full-width at half-maximum (FWHM) Gaussian filter, and
a temporal high-pass filter with a cut-off time of 350 s.

The two-level random effects statistical analysis of the fMRI
data was carried out using Bayesian estimation techniques with
FEAT (Smith et al., 2004). Conditions were modeled accord-
ing to a boxcar stimulus function convolved with a two-gamma
hemodynamic response function (Boynton et al., 1996). The first
minute of each meditation block was excluded from the analy-
sis by modeling it as non-effect, as meditation activations take
time to build up (Davanger et al., 2010). The effect of each con-
dition was estimated according to a general linear model (Friston
et al., 1995). A whole-brain analysis was performed using mixed
effects FLAME-1 algorithms (Beckmann et al., 2003). Statistical

thresholds for contrasts nondirective meditation > rest, and con-
centrative practicing > rest were set to p < 0.05, family wise error
rate was corrected using cluster-level interference by setting clus-
ter forming threshold at z > 3.0 (p < 0.0027). For the contrast
nondirective meditation > concentrative practicing it was set to
p < 0.05 and cluster forming z > 2.3 (p < 0.0214). To increase
sensitivity, the threshold was set less stringently for the latter
comparison, because the expected difference between two simi-
lar conditions is usually smaller and the variability greater than
for respective comparisons with rest. For all three contrasts, cor-
relation analysis with years of experience as independent variable
was performed in FEAT using FLAME-1 algorithm. Years of expe-
rience was defined as an extra environmental variable for all three
contrasts. Brain areas were identified by FSL atlases and other
relevant sources for functional data as referenced.

STATISTICAL ANALYSIS OF QUESTIONNAIRE DATA
A post-scan behavior questionnaire comprised three questions
(translated from Norwegian): (1) How disturbing was the scanner
sound in the background: 0 = not at all, 1 = some, 2 = much.
(2) What was the extent of mind wandering compared to reg-
ular meditation outside the scanner: 0 = less, 1 = similar, 2 =
more. (3) Did you become drowsy or fall asleep: 0 = wakeful,
1 = drowsy, 2 = fell asleep. The questionnaire data were ana-
lyzed in Microsoft Excel (Microsoft Corporation, Redmond, WA,
USA). Fisher’s exact test was performed to assess whether mind
wandering, drowsiness and disturbance by scanner depended on
the mode of practicing (nondirective vs. concentrative) in 2 × 2
tables, excluding table lines with zero-cells. As described below,
participants who fell asleep during scanning, were excluded from
further analyses.

RESULTS
BEHAVIORAL DATA
Data from a brief questionnaire administered immediately after
each fMRI recording indicated a trend for less mind wandering
with concentrative practicing compared to regular meditation.
Even though the meditation blocks were short and the num-
ber of participants small, a larger number experienced less mind
wandering during concentrative practicing than during nondirec-
tive meditation, whereas the numbers of participants who were
wakeful/drowsy and disturbed some/much by noise were simi-
lar during nondirective and concentrative practicing, respectively
(Table 1). A majority spontaneously remarked that concentrative
practicing was effortful and tiring, although it was not an item in
the questionnaire.

fMRI DATA
The fMRI assessments showed that nondirective meditation acti-
vated several regions of the cerebral cortex as well as subcortical
structures significantly more than during resting. However, com-
pared to nondirective meditation, during concentrative practicing
fewer areas were activated more than at rest. Some regions in the
right temporal lobe were activated significantly stronger during
nondirective meditation than concentrative practicing. The acti-
vated areas for each contrast are detailed below. There was no
correlation between activation and years of meditation experience.
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Table 1 | Meditation experience during scanning assessed by

post-scan questionnaire.

Nondirective Concentrative P-value

meditation practicing

MIND WANDERING

Less 8 12

Similar 6 2 0.09

More 0 0

WAKEFULNESS

Wakeful 10 9

Drowsy 4 5 0.29

DISTURBED BY NOISE

Not at all 1 0

Some 8 10

Much 5 4 0.23

For mind wandering, numbers denote participants experiencing less or similar

mind wandering in the scanner compared to regular meditations. P-values were

assessed by Fisher’s exact test, as described in Methods.

NONDIRECTIVE MEDITATION
Increased signal for the contrast nondirective meditation > rest
was found in several regions, including orbitofrontal, motor,
somatosensory, visual, association, and limbic areas (Figure 1;
Table 2). Notably, nondirective meditation increased activity in the
prefrontal cortex, showing a large cluster with the point of max-
imal activation in the straight gyrus, covering a large part of the
right orbitofrontal cortex as well as medial prefrontal areas. Also
the anterior cingulate cortex, parts of the parietal lobe (posterior
cingulate cortex, precuneus, anterior/inferior parts of the lateral pari-
etal lobe) and the temporal lobe (inferior and medial temporal lobe,
hippocampus, amygdala) were activated more than at rest.

Large clusters were also detected in the occipital lobe covering
vision areas in the middle occipital gyrus and striate cortex. In the
posterior part of the frontal lobe, activation occurred in primary
and supplementary motor areas of the left hemisphere, extending
into Broca’s area.

In the left parietal lobe, sensorimotor and secondary sensory
regions including part of the precuneus were activated. There was
no change in Wernicke’s receptive speech area.

In the right temporal lobe, three clusters were found: the
fusiform cortex/inferior temporal gyrus/parahippocampal gyrus
including the visual processing and facial areas, the hippocampus,
and the amygdala.

In the cingulate cortex, separate clusters in the right and left
anterior regions were activated, as well as in the right poste-
rior regions. Activated clusters were also seen in two non-cortical
regions: In the left basal ganglia (putamen, globus pallidus, and
the nucleus accumbens), and in a right and a left cerebellar region.

The opposite contrast, nondirective meditation < rest, showed
no positive activation.

CONCENTRATIVE PRACTICING
The contrast concentrative practicing > rest revealed signifi-
cant activation in three regions (Figure 1; Table 3). Motor area
activation was present in the posterior part of the middle frontal

FIGURE 1 | Areas with increased cerebral activation. Color-coded
regions show activation above threshold in the following contrasts:
Nondirective meditation > rest (red-yellow), concentrative practicing > rest
(dark blue-light blue), and nondirective meditation > concentrative
practicing (dark green-light green). Activations are superimposed on MNI
template (Montreal Neurological Institute).

gyrus/premotor cortex, precentral gyrus, the primary motor cor-
tex, and the supplementary motor area/pre-motor cortex. In
visual areas, we observed activation of the middle and infe-
rior occipital gyrus/lateral occipital cortex, the occipital fusiform
gyrus, and the intracalcarine/visual and the occipital pole/visual
cortices. Lastly, one cluster was activated in the dorsal aspect of
the anterior cingulate cortex, bilaterally. No parietal or temporal
clusters were seen during concentrative practicing.

The opposite contrast, concentrative practicing < rest, showed
no positive activation.

NONDIRECTIVE MEDITATION vs. CONCENTRATIVE PRACTICING
The contrast nondirective meditation > concentrative practicing
(Figure 1; Table 4) revealed higher activation of several areas in
the temporal lobe: middle and inferior temporal gyrus, fusiform
gyrus, amygdala, and parahippocampal gyrus.
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Table 2 | Cerebral regions with increased activity: nondirective meditation > rest.

Nondirective meditation > Rest

z-threshold: 3.0 and Cluster forming P-threshold: 0.05

Anatomical location Hemisphere Lobus X Y Z z-score Cluster size BA

Straight gyrus (frontal lobe) R Frontal 22 36 −21 4.86 25,554 11

Middle occipital gyrus
(secondary visual cortex)

R Occipital 24 −86 27 4.66 18,659 18

Inferior occipital gyrus
(secondary visual cortex)

R Occipital 36 −83 0 4.54 2754 19

Middle occipital gyrus
(secondary visual cortex)

R Occipital 30 −86 20 4.5 18,659 18

Premotor cortex (lateral),
(supplementary motor area)

R Frontal 7 −74 −14 4.35 18,659 17

Precentral gyrus (premotor
area, Broca’s area)

L Frontal −56 5 17 4.32 8340 6, 44

Superior parietal lobule
(secondary sensorimotor
cortex)

L Parietal −14 −56 55 4.24 8340 5, 7

Postcentral gyrus, superior
temporal gyrus

L Parietal −61 −15 14 4.17 8340 1, 2, 3

Superior parietal lobule
(secondary sensorimotor
cortex)

L Parietal −19 −60 47 4.12 8340 5, 7

Inferior temporal, fusiform,
parahippocampal gyrus

R Temporal 44 −26 −27 4 3196 20

Hippocampus R Temporal 27 −17 −6 3.96 3196 N/A

Insula (posterior) L Insula −37 −2 −7 3.91 3173 14

Middle occipital gyrus
(secondary visual cortex)

L Occipital −20 −74 −12 3.85 18,659 18

Inferior temporal and fusiform
gyrus

R Temporal 38 −27 −32 3.59 3196 20

Anterior cingulate cortex R Frontal 8 37 10 3.58 25,554 32

Posterior cingulate cortex R Frontal 8 6 31 3.54 25,554 24

Anterior cingulate cortex L Frontal −3 42 −3 3.54 25,554 32

SUBCORTICAL

Putamen L Sub-cortical −27 −2 −8 4.22 3173

Nucleus accumbens L Sub-cortical −7 10 −9 4.16 25554

Pallidum L Sub-cortical −24 −11 2 3.69 3173

Nucleus caudatus L Sub-cortical −11 15 3 3.6 25554

Amygdala R Sub-cortical 23 −5 −21 3.47 3196

Thalamus L Sub-cortical −16 −15 15 3.43 3173

Pallidum R Sub-cortical 22 −5 −2 3.39 3196

Putamen R Sub-cortical 25 4 −5 3.15 3196

The analysis was carried out using whole brain analysis with z-threshold = 3.0 and cluster forming p-threshold: 0.05. Coordinates in MNI coordinates (Montreal

Neurological Institute) (R, right; L, left; BA, Brodmann’s area).

The opposite contrast, nondirective meditation < concentrative
practicing, showed no positive activation.

DISCUSSION
The present study sought to investigate state effects of
nondirective meditation either compared to rest or to concen-
trative practicing in participants with long-term experience of
Acem meditation. Results are consistent with the notion that
nondirective meditation involves more extensive activation of
the default mode network, including brain areas associated with
episodic memories and emotional processing.

DEFAULT MODE NETWORK ACTIVATION
Compared to rest, nondirective meditation increased activa-
tion within all cortical areas defining the default mode network
(Buckner et al., 2008), including the ventral medial prefrontal
cortex, the posterior cingulate/retrosplenial cortex, the inferior
parietal lobe, the lateral temporal cortex, the dorsal medial
prefrontal cortex, and the hippocampal formation (Figure 1,
Table 2). The pattern of activations was similar to that associated
with mind wandering in a recent study of meditation with focused
attention on breath, including posterior cingulate cortex, medial
prefrontal cortex, posterior parietal and temporal cortex, and the
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Table 3 | Cerebral regions with increased activity: concentrative practicing > rest.

Concentrative practicing > Rest

z-threshold: 3.0 and Cluster forming P-threshold: 0.05

Anatomical location Hemisphere Lobus X Y Z z-score Cluster size BA

Middle occipital gyrus
(secondary visual cortex)

L Occipital −13 −89 24 4.17 2086 18

Middle frontal gyrus,
premotor cortex

L Frontal −36 5 49 4.1 6185 6

Supplementary motor cortex,
premotor cortex

L Frontal −6 −3 61 4.02 6151 6

Precentral gyrus, primary
motor cortex

L Frontal −39 −14 41 3.9 6185 4

Middle frontal gyrus, primary
motor cortex

L Frontal −34 7 55 3.88 6185 6

Middle frontal gyrus,
premotor cortex

L Frontal −48 −20 37 3.87 6185 3

Calcarine cortex, primary
visual cortex

R Occipital 17 −74 5 3.85 1874 17

Middle frontal gyrus,
premotor cortex

L Frontal −37 6 58 3.83 6185 6

Calcarine cortex, primary
visual cortex

R Occipital 15 −87 19 3.73 1874 17

Anterior cingulate cortex,
dorsal part

R Frontal 4 11 31 3.63 6185 24

Anterior cingulate cortex,
dorsal part

L Frontal −1 13 34 3.49 6151 24

Inferior occipital gyrus,
secondary visual cortex

L Occipital −21 −75 −11 3.46 2049 18

Supplementary motor cortex,
premotor cortex

R Frontal 7 6 53 3.42 6151 6

The analysis was carried out using whole brain analysis with z-threshold = 3.0 and cluster forming p-threshold: 0.05. Coordinates in MNI coordinates (Montreal

Neurological Institute) (R, right; L, left; BA, Brodmann’s area).

Table 4 | Cerebral regions with increased activity: nondirective meditation > concentrative practicing > rest.

Nondirective meditation > Concentrative practicing

z-threshold: 2.3 and Cluster forming P-threshold: 0.05

Anatomical location Hemisphere Lobus X Y Z z-score Cluster size BA

Middle temporal gyrus R Temporal 52 −6 −22 3.25 3616 21

Parahippocampal gyrus R Temporal 28 −24 −32 3.22 3616

Inferior temporal gyrus, fusiform gyrus R Temporal 36 −2 −20 3.13 3616 20

Inferior temporal gyrus, fusiform gyrus R Temporal 47 −29 −19 3.12 3616 20

SUBCORTICAL

Amygdala R Subcortical 31 2 −19 3.45 3616

The analysis was carried out using whole brain analysis with z-threshold = 2.3 and cluster forming p-threshold: 0.05. Coordinates in MNI coordinates (Montreal

Neurological Institute) (R, right; L, left; BA, Brodmann’s area).

hippocampus (Hasenkamp et al., 2012). In contrast, the control
task of concentrative practicing in the present study seemed to have
little effect on default mode network activation, including only
the anterior cingulate cortex when compared to rest (Figure 1,
Table 3). However, direct comparison of nondirective medita-
tion with concentrative practicing gave only temporal clusters,

including parahippocampal areas and amygdala. These observa-
tions indicate that the extent of default mode network activation
during concentrative practicing probably lies somewhere between
nondirective meditation and rest: slightly more than in rest, but
evidently not enough to yield significant clusters in most default
mode areas. This interpretation is consistent with the trend of less
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mind wandering reported in concentrative practicing compared
to nondirective meditation (Table 1).

Our results corroborate previous findings that suggest
increased default mode network activation during meditation.
Experienced Vipassana meditators (focused attention on breath)
showed stronger activation of the anterior cingulate cortex and the
dorsal medial prefrontal cortex than control subjects (Holzel et al.,
2007). During resting state, practitioners of “brain-wave vibration
meditation” (meditative movement) had greater functional con-
nectivity within the default mode network in the medial prefrontal
cortex than controls (Jang et al., 2011). Performing Transcendental
Meditation (another form of nondirective meditation) gave higher
alpha1 EEG activity in midline cortical regions that overlapped
with the default mode network (Travis et al., 2010).

Our findings regarding default mode network activation are
in contrast with the prevailing view of practices with refer-
ence to mindfulness or Buddhist traditions, as recently reviewed
(Sood and Jones, 2013). For example, experienced practitioners
of “concentration” (focused attention), “loving-kindness” (exer-
cise oriented toward enhancing unconditional, positive emotional
states of kindness and compassion), and “choiceless awareness”
(open monitoring of mind wandering) showed decreased default
mode network activation compared to inexperienced controls
(Brewer et al., 2011; Hofmann et al., 2011), and experienced
Zen meditators had weaker connectivity between the medial pre-
frontal cortex and several other default mode network nodes
(Taylor et al., 2013). These practices are described as “a train-
ing of attention away from self-reference and mind-wandering,
and potentially away from default-mode processing” (Brewer
et al., 2011). Reduced activation of a core default mode net-
work component (precuneus) has been described in experienced
Buddhist monks during focused attention on the breath, whereas
the same area had larger activation than rest during open mon-
itoring of “any experiential or mental content” (Manna et al.,
2010).

Altogether, present and previous results suggest that the rela-
tionship with type of practice and years of experience is more
complex than the presumption that “meditation reduces mind
wandering and default mode network activation.” Our observa-
tions indicate a differential effect related to the relaxed focus of
attention in nondirective meditation vs. concentrative practicing,
actively trying to avoid mind wandering.

PREFRONTAL AND TEMPORAL FUNCTIONS: ATTENTION AND
EMOTIONAL PROCESSING
Across several forms of meditation, regulation of attention has
consistently been linked to increased activity within the anterior
cingulate cortex and the prefrontal cortex (Lazar et al., 2000;
Kubota et al., 2001; Cahn and Polich, 2006; Holzel et al., 2008;
Chiesa and Serretti, 2010; Davanger et al., 2010; Engstrom and
Soderfeldt, 2010; Manna et al., 2010; Hasenkamp et al., 2012).
Some studies have indicated that in meditation, the dorsal ante-
rior cingulate cortex is most probably involved in attention and
in discriminating between relevant and distracting thoughts,
whereas the ventral aspect may serve as a link between emo-
tional processing and autonomic regulation in the hypothalamus
(Ongur et al., 1998; Johansen-Berg et al., 2008).

In the present study, the prefrontal cortex was activated in
a large orbitofrontal and medial cortex cluster (included in the
straight gyrus cluster, frontal lobe) and in an anterior cingulate
cluster during nondirective meditation (Figure 1, Table 2). In
contrast, orbitofrontal and medial areas of the prefrontal cor-
tex (excluding anterior cingulate cortex) were not activated
during the control task of concentrative practicing (Figure 1,
Table 3). As suggested by observations from other contexts (Etkin
et al., 2011), we speculate that part of the activation in these
areas might be associated with emotional processing related to
mind wandering, which would be an interesting topic for future
research. A significant difference between nondirective medita-
tion vs. the control conditions of either rest or concentrative
practicing was activation of the anterior hippocampus and amyg-
dala (Figure 1, Tables 2–4). In addition to spatial orientation,
these areas have been associated with memory and emotional
processing (Fanselow and Dong, 2010).

Hippocampus activation has been associated with mind wan-
dering by detailed temporal analysis of meditation with focused
attention on breath (Hasenkamp et al., 2012); as noted above, it is
a core component of the default mode network (Buckner et al.,
2008). Concomitant activation of hippocampus and amygdala
has been reported in two previous studies of silent nondirec-
tive mantra meditation and relaxation response (Lazar et al.,
2000; Engstrom et al., 2010). In contrast, amygdala activation was
reduced in a study of mindfulness meditation (a breath-focused
attention task) (Goldin and Gross, 2010), and in loving-kindness
meditation (Brewer et al., 2011). Whereas isolated amygdala acti-
vation may indicate psychological strain in post-traumatic stress
disorder (Hughes and Shin, 2011), concomitant activation with
the dorsolateral prefrontal cortex, anterior cingulate cortex, and
the hippocampus may possibly serve to modify stressful emo-
tional memories (Phillips et al., 2003; Shin et al., 2006). On
the other hand, activation of amygdala has been correlated with
subjective effort (Dyck et al., 2011). Further investigations are
needed to determine the function of concomitant activation of
hippocampus and amygdala in meditation.

LIMITATIONS
Some of the present experimental conditions differ significantly
from actual meditation and may limit generalizability of the
results. A major issue was that the participants meditated lying
supine in the scanner (as opposed to sitting). As emphasized in
a recent source of mindfulness-based cognitive therapy (Segal
et al., 2013), reclining with eyes closed predisposes for relaxation,
drowsiness, and even brief episodes of sleep, e.g., during body
scan (page 156). A consequence of this was a tendency of subtle,
involuntary movement during the two 20-min fMRI recordings,
despite fixing the head according to standard procedure. Thirteen
out of 54 original scans (24%) were excluded, a similar rate as
observed in a previous study of mantra meditation (Engstrom
et al., 2010). Since data from nondirective meditation and con-
centrative practicing was analyzed by pair-wise comparison, the
whole data set of a participant was removed if one of the record-
ings was excluded. Thus, exclusion rate seems twice as high as
actual problems with recordings. Nevertheless, the number of
exclusions was unusually high, and may limit the generalizability
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of the findings. The low number included in final analyses is a
limitation per se.

A factor that may have influenced activation patterns during
meditation was noise from the scanner, which might explain less
mind wandering than “in usual meditation” in more than 50% of
the participants (Table 1). However, there was a strong trend for
less mind wandering during concentrative practicing than during
nondirective meditation, indicating their effort to maintain atten-
tion with the meditation sound. This suggests that the meditation
tasks were largely performed according to instructions. It is also
possible that the participants could have been biased toward rating
mind wandering more frequently during nondirective meditation,
as this was their regular practice. In summary, data from the
questionnaire suggest that results from the included participants
may be relevant for understanding mechanisms related to mind
wandering, although external study conditions varied significantly
from actual meditation outside the scanner.

CONCLUSION
The present study demonstrates that nondirective meditation
induces more extensive default mode network activation than
rest. Even though a core characteristic of the practice is a relaxed
focus of attention that accepts mind wandering as part of the
process, it is a paradox that the active task of effortless mental rep-
etition of a meditation sound yields larger default mode network
activation than the passive task of simply resting. This observation
suggests that the nondirective meditation task involves a minimal
level of cognitive effort, which is often emphasized as an impor-
tant characteristic of successful practicing across different types of
techniques used for health and wellness, including focused atten-
tion, open monitoring, and nondirective meditation. The study
also shows that the control task of concentrative practicing of the
same technique (Acem meditation), performed with an effort to
reduce mind wandering, reduced the extent of default mode net-
work activation compared to nondirective meditation, but not
below the level of resting.

Altogether, our findings support the notion that nondirec-
tive meditation is conducive for default mode network activation.
They also indicate that this activation is related to the relaxed
focus of attention, which allows spontaneous thoughts, images,
sensations, memories, and emotions to emerge and pass freely,
accepting them as part of the meditation process. Since the relaxed
focus of attention is a core component of several practices, we
speculate that mental activities associated with default mode
network activation, may be essential for state and trait effects.
Further research is needed to determine whether this activation
is associated with retrieval of episodic memories and emotional
processing during nondirective meditation.
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